193 research outputs found

    Adventures in Bidirectional Programming

    Get PDF
    Most programs get used in just one direction, from input to output. But sometimes, having computed an output, we need to be able to update this output and then calculate backwards to find a correspondingly updated input. The problem of writing such bidirectional transformations — often called lenses — arises in applications across a multitude of domains and has been attacked from many perspectives [1–12, etc.]. See [13] for a detailed survey

    Updating Typical XML Views

    Full text link

    Stability of oligosaccharides derived from lactulose during the processing of milk and apple juice

    Get PDF
    The scientific evidence on the bioactivity of oligosaccharides from lactulose has encouraged us to study their physicochemical modifications during the processing of milk and apple juice. The carbohydrate fraction with a degree of polymerization ≥3 was stable in milk heated at temperatures up to 100°C for 30 min and in apple juice heated up to 90°C for 15 min. An assessment of the Maillard reaction in heated milk pointed out a higher formation of furosine in milk with oligosaccharides from lactulose as compared to its counterpart without this ingredient, due to a higher presence of galactose. The organoleptic properties of juice with oligosaccharides from lactulose were acceptable and similar to those of apple juice with commercial galactooligosaccharides. The results presented herein demonstrate that oligosaccharides from lactulose can be used as prebiotic ingredients in a wide range of functional foods, including those intended for diabetics and lactose intolerant individuals.This work has been supported by project AGL2011-27884 from Spanish Ministerio de Economía y Competitividad.Peer Reviewe

    Comprehension Syntax

    Get PDF
    The syntax of comprehensions is very close to the syntax of a number of practical database query languages and is, we believe, a better starting point than first-order logic for the development of database languages. We give an informal account of a language based on comprehension syntax that deals uniformly with a variety of collection types; it also includes pattern matching, variant types and function definition. We show, again informally, how comprehension syntax is a natural fragment of structural recursion, a much more powerful programming paradigm for collection types. We also show that a very small "abstract syntax language" can serve as a basis for the implementation and optimization of comprehension syntax

    Generic point-free lenses

    Get PDF
    Lenses are one the most popular approaches to define bidirectional transformations between data models. A bidirectional transformation with view-update, denoted a lens, encompasses the definition of a forward transformation projecting concrete models into abstract views, together with a backward transformation instructing how to translate an abstract view to an update over concrete models. In this paper we show that most of the standard point-free combinators can be lifted to lenses with suitable backward semantics, allowing us to use the point-free style to define powerful bidirectional transformations by composition. We also demonstrate how to define generic lenses over arbitrary inductive data types by lifting standard recursion patterns, like folds or unfolds. To exemplify the power of this approach, we “lensify” some standard functions over naturals and lists, which are tricky to define directly “by-hand” using explicit recursion

    Composing bidirectional programs monadically

    Get PDF
    Software frequently converts data from one representation to another and vice versa. Naively specifying both conversion directions separately is error prone and introduces conceptual duplication. Instead, bidirectional programming techniques allow programs to be written which can be interpreted in both directions. However, these techniques often employ unfamiliar programming idioms via restricted, specialised combinator libraries. Instead, we introduce a framework for composing bidirectional programs monadically, enabling bidirectional programming with familiar abstractions in functional languages such as Haskell. We demonstrate the generality of our approach applied to parsers/printers, lenses, and generators/predicates. We show how to leverage compositionality and equational reasoning for the verification of round-tripping properties for such monadic bidirectional programs

    Datalog-Based program analysis with BES and RWL

    Full text link
    This paper describes two techniques for Datalog query evaluation and their application to object-oriented program analysis. The first technique transforms Datalog programs into an implicit Boolean Equation System (Bes) that can then be solved by using linear-time complexity algorithms that are available in existing, general purpose verification toolboxes such as Cadp. In order to improve scalability and to enable analyses involving advanced meta-programming features, we develop a second methodology that transforms Datalog programs into rewriting logic (Rwl) theories. This method takes advantage of the preeminent features and facilities that are available within the high-performance system Maude, which provides a very efficient implementation of Rwl. We provide evidence of the practicality of both approaches by reporting on some experiments with a number of real-world Datalog-based analyses. © 2011 Springer-Verlag.This work has been partially supported by the eu(feder), the Spanish mec/micinn under grants tin2007-68093-C02 and tin2010-21062-C02-02, and the Generalitat Valenciana under grant Emergentes gv/2009/024. M.A.Feliu was partially supported by the Spanish mec fpu grant AP2008-00608.Alpuente Frasnedo, M.; Feliú Gabaldón, MA.; Joubert, C.; Villanueva García, A. (2011). Datalog-Based program analysis with BES and RWL. En Datalog Reloaded. Springer Verlag (Germany). 6702:1-20. https://doi.org/10.1007/978-3-642-24206-9_1S1206702Afrati, F.N., Ullman, J.D.: Optimizing joins in a map-reduce environment. In: Manolescu, I., Spaccapietra, S., Teubner, J., Kitsuregawa, M., Léger, A., Naumann, F., Ailamaki, A., Özcan, F. (eds.) EDBT. ACM International Conference Proceeding Series, vol. 426, pp. 99–110. ACM, New York (2010)Alpuente, M., Feliú, M., Joubert, C., Villanueva, A.: Defining Datalog in Rewriting Logic. Technical Report DSIC-II/07/09, DSIC, Universidad Politécnica de Valencia (2009)Alpuente, M., Feliú, M., Joubert, C., Villanueva, A.: Using Datalog and Boolean Equation Systems for Program Analysis. In: Cofer, D., Fantechi, A. (eds.) FMICS 2008. LNCS, vol. 5596, pp. 215–231. Springer, Heidelberg (2009)Alpuente, M., Feliú, M.A., Joubert, C., Villanueva, A.: Defining datalog in rewriting logic. In: De Schreye, D. (ed.) LOPSTR 2009. LNCS, vol. 6037, pp. 188–204. Springer, Heidelberg (2010)Andersen, H.R.: Model checking and boolean graphs. Theoretical Computer Science 126(1), 3–30 (1994)Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic Sets and Other Strange Ways to Implement Logic Programs. In: Proc. 5th ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, PODS 1986, pp. 1–15. ACM Press, New York (1986)Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer, Heidelberg (1990)Chen, T., Ploeger, B., van de Pol, J., Willemse, T.A.C.: Equivalence Checking for Infinite Systems Using Parameterized Boolean Equation Systems. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 120–135. Springer, Heidelberg (2007)Clavel, M., Durán, F., Ejer, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)Dam, A., Ploeger, B., Willemse, T.: Instantiation for Parameterised Boolean Equation Systems. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 440–454. Springer, Heidelberg (2008)de Moor, O., Sereni, D., Verbaere, M., Hajiyev, E., Avgustinov, P., Ekman, T., Ongkingco, N., Tibble, J.: QL: Object-oriented queries made easy. In: Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2008. LNCS, vol. 5235, pp. 78–133. Springer, Heidelberg (2008)Feliú, M., Joubert, C., Tarín, F.: Efficient BES-based Bottom-Up Evaluation of Datalog Programs. In: Gulías, V., Silva, J., Villanueva, A. (eds.) Proc. X Jornadas sobre Programación y Lenguajes (PROLE 2010), Garceta, pp. 165–176 (2010)Feliú, M., Joubert, C., Tarín, F.: Evaluation strategies for datalog-based points-to analysis. In: Bendisposto, J., Leuschel, M., Roggenbach, M. (eds.) Proc. 10th Workshop on Automated Verification of Critical Systems (AVoCS 2010), pp. 88–103. Technical Report of Düsseldorf University (2010)Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: A Toolbox for the Construction and Analysis of Distributed Processes. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)Hajiyev, E., Verbaere, M., de Moor, O.: CodeQuest: Scalable Source Code Queries with Datalog. In: Hu, Q. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 2–27. Springer, Heidelberg (2006)Hanus, M.: The Integration of Functions into Logic Programming: From Theory to Practice. Journal on Logic Programming 19 & 20, 583–628 (1994)Joubert, C., Mateescu, R.: Distributed On-the-Fly Model Checking and Test Case Generation. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 126–145. Springer, Heidelberg (2006)Leeuwen, J. (ed.): Formal Models and Semantics, vol. B. Elsevier, The MIT Press (1990)Liu, X., Smolka, S.A.: Simple Linear-Time Algorithms for Minimal Fixed Points. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 53–66. Springer, Heidelberg (1998)Liu, Y.A., Stoller, S.D.: From datalog rules to efficient programs with time and space guarantees. ACM Trans. Program. Lang. Syst. 31(6) (2009)Livshits, B., Whaley, J., Lam, M.: Reflection Analysis for Java. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 139–160. Springer, Heidelberg (2005)Marchiori, M.: Logic Programs as Term Rewriting Systems. In: Rodríguez-Artalejo, M., Levi, G. (eds.) ALP 1994. LNCS, vol. 850, pp. 223–241. Springer, Heidelberg (1994)Mateescu, R.: Local Model-Checking of an Alternation-Free Value-Based Modal Mu-Calculus. In: Proc. 2nd Int’l Workshop on Verication, Model Checking and Abstract Interpretation, VMCAI 1998 (1998)Mateescu, R., Thivolle, D.: A Model Checking Language for Concurrent Value-Passing Systems. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 148–164. Springer, Heidelberg (2008)Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency. Theoretical Computer Science 96(1), 73–155 (1992)Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer, Heidelberg (1998)Reddy, U.: Transformation of Logic Programs into Functional Programs. In: Proc. Symposium on Logic Programming (SLP 1984), pp. 187–197. IEEE Computer Society Press, Los Alamitos (1984)Reps, T.W.: Solving Demand Versions of Interprocedural Analysis Problems. In: Adsul, B. (ed.) CC 1994. LNCS, vol. 786, pp. 389–403. Springer, Heidelberg (1994)Rosu, G., Havelund, K.: Rewriting-Based Techniques for Runtime Verification. Autom. Softw. Eng. 12(2), 151–197 (2005)Schneider-Kamp, P., Giesl, J., Serebrenik, A., Thiemann, R.: Automated Termination Analysis for Logic Programs by Term Rewriting. In: Puebla, G. (ed.) LOPSTR 2006. LNCS, vol. 4407, pp. 177–193. Springer, Heidelberg (2007)Ullman, J.D.: Principles of Database and Knowledge-Base Systems, Volume I and II, The New Technologies. Computer Science Press, Rockville (1989)Vieille, L.: Recursive Axioms in Deductive Databases: The Query/Subquery Approach. In: Proc. 1st Int’l Conf. on Expert Database Systems, EDS 1986, pp. 253–267 (1986)Whaley, J.: Joeq: a Virtual Machine and Compiler Infrastructure. In: Proc. Workshop on Interpreters, Virtual Machines and Emulators, IVME 2003, pp. 58–66. ACM Press, New York (2003)Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using Datalog with Binary Decision Diagrams for Program Analysis. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 97–118. Springer, Heidelberg (2005)Zheng, X., Rugina, R.: Demand-driven alias analysis for C. In: Proc. 35th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, POPL 2008, pp. 197–208. ACM Press, New York (2008

    Database Programming in Machiavelli - a Polymorphic Language with Static Type Inference

    Get PDF
    Machiavelli is a polymorphically typed programming language in the spirit of ML, but supports an extended method of type inferencing that makes its polymorphism more general and appropriate for database applications. In particular, a function that selects a field f of a records is polymorphic in the sense that it can be applied to any record which contains a field f with the appropriate type. When combined with a set data type and database operations including join and projection, this provides a natural medium for relational database programming. Moreover, by implementing database objects as reference types and generating the appropriate views — sets of structures with “identity ” — we can achieve a degree of static type checking for object-oriented databases.
    corecore